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ABSTRACT

The prediction of total organic carbon (TOC) content using
geophysical logs is one of the key steps in shale reservoir char-
acterization. Various empirical relations have previously been
used for the estimation of TOC content from well-logs; how-
ever, uncertainty quantification in the model estimation is often
ignored while performing TOC estimation in a deterministic
framework. We introduce the problem of TOC estimation in
a Bayesian setting with the goal of enhancing the TOC content
prediction together with the quantification of the uncertainty in
the model prediction. To signify the uncertainty, we draw ran-
dom samples of model parameters from the posterior distribu-
tion by realizing multidimensional stochastic processes within
the Hamiltonian Monte Carlo algorithm. The posterior model
for the variables that influence TOC estimation is conditioned

on the available well-log observations and is further defined by
a priori and likelihood distributions. We demonstrate examples
of applications of this approach to estimate the TOC content
on two real field data sets from the well-known Devonian
Duvernay shale of Western Canada and the Silurian shale of
the Ahnet Basin. The accuracy in the estimation is arbitrated
by comparing the prediction results with those obtained using
the two most widely used empirical models. Corroborating the
results by the laboratory-measured TOC contents demonstrate
that the Bayesian approach offers a more reliable and better
confidence in predictions when compared with the empirical
models, as it provides additional information on the prediction
uncertainty. Finally, the implications of the present approach are
derived in terms of depositional environments to characterize
the high TOC content zone in the studied organic shale forma-
tions.

INTRODUCTION

Total organic carbon (TOC) content is one of the key parameters
in the geophysical characterization of shale oil/gas reservoir assess-
ment that has an explicit impact on the source-rock quality and shale
oil/gas-in-place estimations (Jarvie et al., 2007; Vernik and Milo-
vac, 2011; El Sharawy and Gaafar, 2012). In practice, this variable
can be reliably obtained from the analysis of cutting and core samples
in a limited number using Rock-Eval pyrolysis in the laboratory,
which is, however expensive, and burdensome. As a matter of fact,
TOC data are sparsely spread, offering a hindrance to the investiga-
tion. To overcome this, many empirical relations and mathematical
equations have been developed and widely applied to predict TOC
values from wireline well-log variables. In general, the presence of

organic matter in shale shows a unique response on wireline log var-
iables. Tixier and Curtis (1967) propose to use density log to identify
source-rock signals on wireline log based on a linear volumetric aver-
age of density log. Supernaw et al. (1978) and Fertl and Rieke (1980)
derive a mathematical relationship based on the gamma-ray (GR)
spectral well-log data to identify the shale resource potential by es-
timating TOC, and subsequently, this approach also has been applied
by several workers (Lüning and Kolonic, 2003; Wang et al., 2014;
Renchun et al., 2015). Schmoker and Hester (1983) propose a model
that predicts TOC based on the reciprocal of the density log. Even
though this method entails a small quantity of input bulk density data,
it may not be useful in some cases, especially when the bulk density
is influenced by the reservoir or geologic variables. Meyer and
Nederlof (1984) establish a qualitative technique involving a relation-
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ship between resistivity, sonic, and bulk density logs to identify
source rocks from wireline logs. Mendelzon and Toksoz (1985)
present a multivariate regression model with a high coefficient of de-
termination to identify quantitative relationships between the wireline
logs and core-derived TOC values. Passey et al. (1990) propose the
δ log Rmethod by overlaying porosity logs (e.g., sonic, neutron, and
density), and resistivity log, which is the most widely used technique
over the last three decades. However, one needs to be cautious while
selecting the log baseline manually because it may vary significantly
from well-to-well and across the formations, often resulting in
ambiguous TOC estimation. Carpentier et al. (1991) introduce the
CARBon Organic LOG (CARBOLOG) method in which in situ or-
ganic matter content is estimated by blending physical properties
with sonic transit time and resistivity data. Huang and Williamson
(1996) present a data-driven approach, namely artificial neural net-
work modeling to infer an accurate relationship between TOC con-
tent and well-log variables. Kamali and Mirshady (2004) develop a
hybrid method based on the δ log R method and neuro-fuzzy ap-
proaches to predict the rich intervals with high TOC content. Jacobi
et al. (2008) establish a method for TOC estimation based on the
discrepancy between grain density and inorganic grain density, which
was useful to distinguish between source rocks and nonsource rocks.
Further, numerous researchers revisit the δ log R method and devise
various improved methods for the prediction of TOC content (Pan
et al., 2009; Bakhtiar et al., 2011; Liu et al., 2015; Hu et al.,
2016; Zhu et al., 2019). With the advent of intelligent systems
and machine learning techniques and recognition of their potential,
these approaches have been recently applied to analyze the relation-
ship between TOC content and geophysical well-log variables
(Khoshnoodkia et al., 2011; Tan et al., 2013; Zhao et al., 2015; Verma
et al., 2016; Yu et al., 2017; Bai and Tan, 2020). TOC estimation
using data-driven approaches is complex as these are mostly based
on nonlinear relationships that involve multiple parameters. Conse-
quently, simple, or multivariate regression methods are often
preferred for organic content assessment in shales.
Bayes’ theorem (Bayes, 1763) and Bayesian data analysis are

widely known and uncomplicated. In recent decades, the Bayesian
approach has gained popularity in the geophysical application for
exploration and reservoir studies (e.g., Buland and Omre, 2003;
Larsen et al., 2006; Rimstad et al., 2012; Sen and Biswas, 2017;
Grana, 2020). Doyen (1988) and Bortoli et al. (1993) apply
geostatistical methods, for the first time, to infer petrophysical
properties from seismic data. A brief synopsis of uncertainty quan-
tification, stochastic behavior, and Bayesian inverse theory for
geophysical applications under various statistical assumptions is
covered in Sen and Stoffa (1996), Scales and Tenorio (2001),
Mosegaard and Tarantola (2002), and Tarantola (2005). Buland
and Omre (2003) bring forward an analytical solution, based on
the Bayesian approach, related to the inverse problem of linearized
amplitude variation with offset. Eidsvik et al. (2004) cast the pre-
diction of facies and pore-fluid distributions in the Bayesian frame-
work with a statistical rock-physics model to generate probability
maps for the identification of promising plays within the reservoir.
Recently, Grana (2020) presents Bayesian petroelastic inversion by
realizing the posterior distribution as a summation of contributions
from all of the likelihood functions of plausible models based on
multiple prior models.
Even though research efforts to establish a relationship between

the TOC content and well-log variables have been on the rise, using

Bayesian theory for TOC estimation has not been explored system-
atically, except by Qian et al. (2019) and Deng et al. (2020).
However, these two studies propose a Bayesian-inference-based in-
version scheme to estimate TOC along with other petrophysical
properties (e.g., porosity, water saturation, and brittleness volume),
and they are not directly related to demonstrating the relationship
between shale TOC content and well-log variables. This caters a
good opportunity to strengthen and endorse our efforts in using
the Bayesian approach to predict the TOC content, and also assess
the associated uncertainty in estimation for prospective shale plays.
In this study, we outline and demonstrate the application of the
Bayesian approach combined with the Hamiltonian Monte Carlo
(HMC) inference method to estimate shale TOC contents incorpo-
rating prior knowledge gathered from various geophysical log var-
iables, namely GR, sonic, bulk density, thorium (Th), and uranium
(U) logs. We then apply the method to predict the TOC contents
through two examples: (1) Devonian Duvernay Formation, Western
Canada and (2) Silurian shale of the Ahnet Basin, which are used as
field case studies. Further, to demonstrate the efficacy of the present
approach, we compare the results from the Bayesian setting using
HMC inference with those from the widely used conventional meth-
ods for TOC estimation and corroborate the results by laboratory-
measured TOC contents.

THEORY

Bayes’ theorem

Bayesian analysis is a rigorous way to get information about
the probability of the model parameters (known as “prior”), which
is essentially the blend of predictions about the unknown model
parameters and information learned about the same from the data
(Buland and Omre, 2003; Rimstad et al., 2012; McElreath, 2016).
Simply put, it is a method to interpret evidence in the context of
prior experience that might be related to the event. For instance,
if the risk of shaking due to earthquakes is known to impact severely
the loose unconsolidated sediments, Bayes’ theorem permits the
risk to a particular area of known unconsolidated sedimentation
to be evaluated more precisely than merely assuming that the par-
ticular case is typical of the population as a whole. In general, the
process acts in a nonlinear iterative fashion and can be summarized
by three key steps, as given next.

1) Based on some data and expectations on how the data being
generated, we develop models (mostly crude approximation)
through the information about probability distributions.

2) Then, we use a Bayesian approach to augment data to the
models for deriving logical consequences from blending
the data and our speculations.

3) Finally, we criticize the developed models by examining
whether the model makes logical predictions adopting vari-
ous criteria including data, experience, and occasionally even
comparing with other relevant models.

Mathematically, a Bayesian approach that combines priors and
data can be expressed as

pðmjdÞpðdÞ ¼ pðdjmÞpðmÞ; (1)

where p, m, and d are probability, model variables, and measured
data, respectively; pðmjdÞ is the posterior distribution of the model
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m given the measured data d; and pðdjmÞ is the conditional prob-
ability (read as the likelihood of observing the data for a given
model) of the data d given the model variables as m. It is vital
to choose a probability distribution that best describes the measured
data. It is to note that the information about pðdÞ, in many appli-
cations, does not need to be quantified because the Bayesian frame-
work takes the advantage of the theorem that the posterior
distribution is proportional to the likelihood times the prior, given
pðdÞ as a normalizing constant (equation 1).
The prior pðmÞ should express what information about the model

parameters can be gathered before seeing the data d. Conceptually,
prior defines a statistical model for prior information about the
model m expressed statistically by the probability density function
(PDF). In this case, we assume it to be any valid PDF that defines
the a priori knowledge about TOC before any core data are inves-
tigated. We define the parameters of the prior model as “π” that
control the prior knowledge about the model, which are mostly
fixed in Bayesian analysis. If these parameters π are not fixed, then
we recast equation 1 as

pðmjd;πÞpðdjπÞ ¼ pðdjm;πÞpðmjπÞ: (2)

The likelihood is defined by the plausibility of the data given the
model m. It comprises forward models that signify the physical re-
lation between model and data including the uncertainty. In prac-
tice, likelihood takes the form of a normal or Gaussian distribution.
In this case, the likelihood can be expressed as pðDjmÞ that repre-
sents a link between the TOC distribution and well-log variables
(GR, sonic, etc.) D in the following form:

pðDjmÞ ¼
Y
t

pðDtjmtÞ: (3)

The posterior is the outcome from the Bayesian analysis and
echoes all that we learn about the problem. In general, it is the bal-
ance between likelihood and prior, represented by the probability
distribution of model parameters within the model and not a single
value. Often, the posterior is treated as the updated probability of an
event before considering (new) data. Subsequently, posterior from
one study can be used as the prior for a new analysis. In such a way,
the best model can be obtained by choosing the model, which has
the highest posterior PDF. The posterior distribution for the prior is
represented by equation 2 in a parameter space ωπ can be obtained
by

pðmjdÞ ¼
Z
ωπ

pðmjd;πÞpðπjdÞdπ: (4)

For more details about the Bayesian theorem, readers can refer to
Sivia and Skilling (2006) and McElreath (2016).

Model inference using HMC

HMC is an extensive and successful Markov chain Monte Carlo
(MCMC) method used to get a sequence of random samples that
converge to being disseminated according to a target probability
distribution for which direct sampling is strenuous. Instead of de-
pending on fragile heuristics (guess-and-check-strategy), the HMC

method is built upon a rich theoretical basis that suggests obtaining
information about the geometry of the unmapped areas of the typ-
ical set (see, e.g., Mackay, 2003; Betancourt and Girolami, 2013;
Sen and Biswas, 2017). Compared with the Metropolis-Hastings
algorithm, the HMC method lessens the correlation among succes-
sive sampled states by offering transfers to distant states, which
nurture a high probability mass due to approximate energy preserv-
ing properties of the simulated Hamiltonian dynamic (Duane et al.,
1987; Neal and Radford, 2011; Sen and Stoffa, 2013). Sub-
sequently, a state of convergence can be achieved where successive
simulations will be similar to drawing samples from the posterior
distribution of the model that we wish to estimate. This makes the
algorithm to be inimitably suited for the well-behaved target distri-
butions in the high-dimensional problems of applied interest.
HMC is a fixed-dimensional MCMC method that augments the

target state space with an auxiliary momentum variable P and fol-
lows Hamiltonian dynamics to make proposals for the Metropolis
algorithm in the following form:

pðmi;PÞ ¼ pðmijPÞpðmiÞ: (5)

Because the HMCmethod has been discussed in detail by numerous
authors (Mackay, 2003; Neal and Radford, 2011; Betancourt and
Girolami, 2013; Sen and Biswas, 2017), we prefer not to repeat
it here. Nevertheless, brief detail on the formulation of the method
is provided in Appendix A. Because there is no analytical solution
for Hamilton’s equation, the Hamiltonian dynamics are generally
approximated in a discrete-time “t.” This discretization is achieved
by the leapfrog algorithm, which adapts discrete-time steps
(e.g., “Δt”) conserving the two most vital properties of the Ham-
iltonian dynamics, “reversibility” and “volume preservation.” The
leapfrog integration begins by drawing a fresh momentum term
self-reliantly on the previous momentum value or parameter values
mi, and can be expressed as follows:

P
�
tþ Δt

2

�
¼ PðtÞ − Δt

2

∂fðmiÞ
∂mi

ðmiðtÞÞ;

miðtþ ΔtÞ ¼ miðtÞ þ PΔt
�
tþ Δt

2

�
;

Pðtþ ΔtÞ ¼ P
�
tþ Δt

2

�
−
Δt
2

∂fðmiÞ
∂mi

ðmiðtþ ΔtÞÞ: (6)

In the leapfrog method, for one integration step, we start by sim-
ulating the momentum P for the current state using a Gaussian dis-
tribution ð0;PÞ by ðΔtÞ∕2 time units. Then, we perform a full-step
(Δt) simulation for mi using the updated values of momentum P
and position variables sequentially. Subsequently, we perform the
simulation for momentum dynamics for the remaining half-step
ðΔtÞ∕2 with the intent that the momentum and model perturbations
can attain the full-time steps. In such a way, the proposal state
ðm�

i ;P
�Þ can be reached from an initial state ðmi;PÞ via L steps

(total number of integration steps) of step size Δt with a total of
“LΔt” time. Note that the leapfrog method could not conserve
Hðmi;PÞ precisely due to the integration error of the order of ðΔtÞ3
per step and ðΔtÞ2 globally. Hence, to account for such numerical
errors, a Metropolis correction (acceptance) step becomes necessary
to ensure proper sampling. The probability of accepting the pro-
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posal ðm�
i ;P

�Þ as the next state of the Markov chain from the tran-
sition state ðmi;PÞ is

pθ ¼ minf1; expðHðmi;PÞ −Hðm�
i ;P

�ÞÞg: (7)

If the proposal is not accepted, then the previous parameter value
is returned for the subsequent draw and used to initialize the next
iteration. It is noteworthy that the choice of L and Δt can greatly
contribute to obtaining the optimized acceptance rate; hence, they
need to be tuned properly (not too high nor too low). To tune these
parameters, the no-U-turn sampler (NUTS) plays a significant role,
which is discussed in Appendix B for the sake of completeness. In
general, NUTS is an extension by regulating L value in each iter-
ation automatically to avoid the requirement of knowledge of L and
random-walk behavior. This makes it efficient to perform sampling
of the posteriors in a much faster way. The efficient employment of
NUTS depends on the acceptance probability. This class of sam-
plers can spontaneously choose a step size that attains an acceptance
probability of 0.6, which is optimum.

The Bayesian model

The aim of the present study is to predict the TOC profile to-
gether with the uncertainty in predictions of model variables, and
the probability distribution of the predicted TOC profile. To solve a
geophysical inverse problem dealing with measured data d, model
parameters m, and error ϵ, we suppose that the set of physical re-
lationsG (i.e., the operator that generates the data for known param-
eters) is already identified (Buland and Omre, 2003; Grana, 2020).
The forward problem can be expressed as

d ¼ GðmÞ þ ϵ: (8)

Because the interest of the present study lies in uncertainty quan-
tification, we emphasize probabilistic methods, namely on Bayesian

regression method, intending to compute the posterior distribution
of the model parameters given the observations (see equation 1). To
be specific, our interest is to estimate the TOC values against depth
using the prior(s) based on the knowledge obtained from available
geophysical logs. Hence, in a probabilistic framework, the model is
a multivariate regression, and the predicted TOC with an expected
value φ can be expressed as

dTOC ∼ Bðφ ¼ β0 þ β1x1 þ β2x2

þ β3x3 þ β4x4 þ β5x5; σ ¼ ϵÞ; (9)

where β0 is the intercept, βi¼1;2;::;5 are the coefficients for the co-
variate xi, and σð¼ ϵÞ denotes the observation error. Note that dTOC
observed as the Gaussian distribution with a mean of φ and standard
deviation of σ. To develop the Bayesian framework, we must assign
a prior distribution to the unknown model parameters. For a Baye-
sian regression model such as equation 18, a reasonable generic
preference for regression parameters would be a normal distribution
because these variables can be positive and negative. Therefore, we
can write

β0 ∼ Bðφβ0 ; σβ0Þ;
βi¼1;2;::;5 ∼ Bðφβi ; σβiÞ;
σ ∼ jBð0; σϵÞj: (10)

For the sake of completeness, we provide the Kruschke diagrams
for easy representation and interpretation of the deterministic var-
iables (e.g., φ, as represented by “¼”) and stochastic variables such
as β0, βi¼1;2;::;5, and ϵ, as denoted by “∼” (Figure 1).

APPLICATIONS

Example 1: Experiment on the Devonian Duvernay
Formation, Western Canada

To demonstrate the applicability of our approach in the first ex-
ample, we choose the wireline log data together with core-measured
TOC values from well A, representing an organic shale from the
Devonian Duvernay Formation, Western Canada. The data are from
a well-known study reported by Passey et al. (1990). The well-log
data comprise GR, resistivity, compensated acoustic log (DT), com-
pensated density (RHOB), and compensated neutron log (CNL),
which are the inputs to the Bayesian model with priors. The target
zone is 2249–2435 m, representing the reservoir intervals of the
studied formation. Here, we define the Bayesian model by the
stochastic random variables with normal prior PDFs for the regres-
sion coefficients with a standard deviation of 10, and for the stan-
dard deviation of the observed data as a half-normal distribution.
Further, we consider the sampling distributions of the outcomes
in the core-measured TOC, representing the data likelihood to be
normal distribution. Note that the parameters for the likelihood
of the model are not static values, unlike for the priors, rather a
combination of deterministic and stochastic objects. Next, we
obtain the posterior approximates for the unknown parameters in
the model by drawing samples using the HMC method with the
NUTS. We sample two chains in parallel that allow 1000 tunes
for each chain to meet its steady-state and then generate an addi-
tional 3000 samples from all parts of the posterior distribution (or

Figure 1. Schematic diagram representing the probabilistic formu-
lation of the Bayesian regression model. Here, arrows marked by ∼
signify stochastic dependency, and those marked by = represent
deterministic dependency.
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fully exploring the distribution), considering that the chain has con-
verged after 1000 samples. To ensure that the independent chains
are converged on the same space, although they are initiated from
randomly selected places, we realize trace plots, which are illus-
trated in Figure 2. We notice that the curves within the trace plots
are freely meandering around, indicating a good mixing. The left
column of the trace plot characterizes the marginal posteriors of
each stochastic parameter required to build the regression model,
as a smoothed histogram, whereas the right column represents
the samples of the HMC chains plotted in sequential order (Fig-
ure 2). Table 1 summarizes the corresponding descriptive statistics
from the analysis. To ascertain if the chains for HMC samples are
converged, we analyze the trace plots in conjunction with the evalu-
ation of the Gelman-Rubin convergence criteria. In general, it is a
way of checking whether the Markov chains converge on the same
posterior, represented by a ratio of the concerted variance of values
covering entire chains to the average variance of each chain. Insti-
tutively, the value of the Gelman-Rubin statistic (R_hat) should be
one if all of the chains for the given parameter converge in the same
space. If there is more variability across chains and within chains,
then it suggests that they are frozen in their own various local
spaces, and the variance of the values across chains will be higher

than that of each chain. In this example, the R_hat value is equal to
1.0 for all of the variables used in the model, which suggests that
there is no variability between the chains and within chains and that
the chains are converged successfully.
To demonstrate the effectiveness of the proposed approach for

TOC prediction, we compare the regression results with those ob-
tained from the widely used conventional techniques such as the
GR-based approach and the modified Schmoker and Hester
(1983) model (henceforth, modified SH model). In comparison,
the Bayesian model predicted TOC contents are better than those
of GR-based and modified SH models, as can be seen from the
crossplots in Figure 3. By contrast, the correlation coefficient
(i.e., R2, a numerical measure of a linear relationship between var-
iables) of the Bayesian predicted model is highest, approximately
0.802, when compared with that of both of the conventional meth-
ods for TOC estimation, as listed in Table 2. Note that in the case of
perfect prediction in which predicted TOC values perfectly match
the core-measured TOC values, R2 is equal to 1.0. The mean ab-
solute error (MAE) and root-mean-square (rms) error for the Baye-
sian model are approximately 0.937 wt% and 1.187 wt%,
respectively, which are significantly lower than those values of both
of the conventional methods (Table 2). We thus find that the Baye-
sian model is more flexible as it shows the highest accuracy among
all three methods, which is evident from the example
case.

Example 2: A case study from the Silurian shale,
Ahnet Basin

In example 2, we focus on validating the present approach for
TOC estimation on real data collected from a well located in the
Ahnet Basin, targeting the Silurian shale. This north–south-trending
basin is situated in the west-central part of the southern Algerian
Sahara and hosts a nearly 3000 m thick Paleozoic sequence of Cam-
brian to Carboniferous age (Logan and Duddy, 1998). A major
regional flooding event during the Silurian deposited a thick trans-
gressive marine shale comprising sapropelic and mixed (types I and
II) kerogen (Makhous et al., 1997). The Silurian shale in the Ahnet
Basin is characterized by 20%–50% clay and 15%–51% quartz with
11%–39% pyrite and minor carbonate associations (Figure 4). The
X-ray diffraction data indicate that illite and chlorites are the dom-

Figure 2. Trace plots of samples of HMC chains in sequence (right
column) and marginal posteriors of each stochastic parameter (left
column) for the multivariate regression model for well A.

Table 1. A statistical summary of the posterior estimates of
the Bayesian model parameters for the studied well, well A.

Coefficients Posterior mean HPD_3% HPD_97% ESS R_hat

Intercept −2.768 −19.551 13.890 3427 1.0

GR 0.021 −0.023 0.065 3006 1.0

Resistivity 1.856 −1.309 5.158 4755 1.0

DT 0.139 0.028 0.243 3310 1.0

RHOB −5.727 −12.152 1.101 3222 1.0

CNL 0.456 −12.524 12.459 4767 1.0

Sigma 1.390 0.989 1.846 3573 1.0

Note: ESS, effective sample size; HDI, highest posterior density; R_hat, Gelman-
Rubin statistic.
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inant clay minerals in this formation. A geo-
physical log suite of this well comprises natural
GR, RHOB, compressional sonic (DTCO), and
natural GR spectrometry logs including uranium
and thorium. The shale section can be distinctly
divided into two sections based on the wireline
log responses. The upper shale has a consistent
approximately 150 API GR value with 2–5 parts
per million (ppm) U and 15–21 ppm Th (Fig-
ure 4). A Th:U ratio of >2 is indicative of the
oxidizing environment in the upper shale. In con-
trast, the lower Silurian shale reveals very high
GR (>200 API), U ≥ 15 ppm, and Th < 15 ppm
(Figure 4). The entire lower shale exhibits Th/
U < 2, which corresponds to a highly anoxic con-

dition (Carvalho et al., 2011).

TOC estimation based on the Bayesian approach using HMC
inference

We corroborate the findings with the TOC contents derived from
a total of 25 core plug samples, as obtained from drilling through
the target Silurian shale formation. First, we perform the necessary
data preprocessing before using the well-logs. For example, we en-
sure the density log readings by checking the caliper readings to
identify the washout sections, if any, which can potentially under-
estimate the formation bulk-density properties. Figure 5 illustrates
the crossplots between various log variables and target TOC con-
tent, together with the histograms of each variable along the diago-
nal. Overall, we observe a linear relationship in the distributions
between each variable; therefore, the application of the standard
Bayesian approach to the data is feasible. Moreover, with careful
observation of the univariate histograms, we realize that the trend
of TOC versus GR and TOC versus U log distributions is quite
alike, yet these distributions exhibit a large variability (Figure 5).
We define the model that we want to estimate for this case ex-

ample by considering the formula given as follows:

dTOC ∼ Bðφ ¼ β0 þ β1GRþ β2DTCO

þ β3RHOBþ β4Uþ β5Th; σ ¼ 10Þ; (11)

Here, we assume that the prior distributions for the regression
coefficients dealing with the geophysical log inputs are Gaussian
(i.e., normal) and the prior number of modes is finite, given the re-
stricted range of magnitudes of the well-log parameters against
depth. Also, we assume that the prior distribution has a zero mean
and a half-normal distribution for the constant standard deviation
value of 10. Similar to the case of example 1, we repeat the same
workflow to draw samples from the posterior by realizing multidi-
mensional stochastic processes within the HMC-based MCMC al-
gorithm, meaning that when simulated will converge. We allow the
algorithm, in which NUTS is the assigned step method, to draw
samples from the posterior to resemble the posterior for each model
parameter. Consequently, the posterior distribution will have one
dimension for each model parameter and the distribution of samples
can be used to infer a series of possible estimates or point estimates
by considering the mean of all samples. To set the tunable param-
eters of the HMC algorithm, NUTS adapts several self-tuning strat-

Table 2. Comparison of the Bayesian predicted and other
conventional methods predicted TOC contents for the well
A, example 1.

Methods

Prediction accuracy indicators

rms error
(wt%)

MAE
(wt%)

Correlation
coefficient (R2)

Bayesian model using
HMC inference

1.185 0.938 0.802

GR-based model 1.441 1.210 0.708

Modified SH model 1.610 1.301 0.636

Figure 4. Characterization of the Silurian shale properties from the
Ahnet Basin from wireline logs and mineralogy data. The lower part
of the shale is exhibiting a more anoxic environment.

Figure 3. Comparison of the core-derived TOC contents with predicted TOC contents
based on (a) the Bayesian model using HMC inference, (b) GR-based model, and
(c) modified SH model for the well A example. The correlation coefficients of labora-
tory-measured TOC contents and the Bayesian predicted, GR log precited, and modified
SH predicted TOC contents are approximately 0.802, 0.708, and 0.636, respectively.
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egies. NUTS necessitates setting a scaling matrix parameter to a
judicious value to make the sampling competent. If the selection
of scaling parameters is poor then NUTS slows down considerably,
occasionally almost stopping it entirely. We run NUTS by setting
the parameters δ ¼ 0.6 and γ ¼ 0.05with a target acceptance of 0.9.
For the initial guess, the step size is 0.25. The step-size adaptation
parameter for dual averaging to meet time reversibility is set to 0.75.
We initiate with eight maximum tree depths throughout the tuning
phase of sampling and end up with the trajectories when the maxi-
mum tree depth reaches a value of 10. Such proper parameterization
sets NUTS to reasonable values based on the variance attained dur-
ing the tuning process. In this experiment, we sample two chains
parallel that consider approximately 1000 steps for each chain to
attain a state of convergence, and subsequently sample for another
2000 steps to produce samples from the posterior distribution of the
model we wish to estimate. The extra draw that the sampling algo-
rithm considers during the tuning phase is to allow the Markov
chain to sample from a sensible model space in the distribution.
In practice, these initial draws are rejected and not included in
the sample of the final model space. The warm-up phase for NUTS
is 1000 iterations. The models sampled after the warm-up can
be used to characterize the target posterior distribution. After the
warm-up phase, in total, we perform approximately 6000 successive
simulations to obtain the marginal posterior distributions. The main
results comprise the predicted TOC model along with the uncer-
tainty in the prediction.
To deduce if the sampler made suitable HMC

sample draws from the posterior distributions, we
anticipate seeing a series of chains running over
the parameter space in the trace plots. A review
of the trace plots, as graphically depicted in Fig-
ure 5, indicates that the marginal posterior distri-
butions of each stochastic variable are unimodal
and bilaterally symmetrical. Note that the model
result is not a unique single value but rather a
distribution for the parameters. Trace plots are
extremely informative and exemplify stationarity
(i.e., no odd patterns) and excellent convergence
(Figure 6). This implies that the samples hold on
within the posterior distribution across iterations
and chains, and they are not strolling outside the
posterior distribution. If the chains are strikingly
different, it would imply poor convergence. The
convergence of chains helps us understand
whether we have samples from the posterior dis-
tribution. Equally important is to ensure that we
have enough required samples that are accurate
and stable (Martin, 2018). Ideally speaking, if
we draw 6000 samples then we should have
6000 unique information about the posterior
distribution. However, regrettably, we get less in-
formation than that because the draws are corre-
lated, which is defined by autocorrelation. It is
important to desire autocorrelation to be small
as that suggests we require shorter chains for a
proper representation of the posterior distribu-
tion. Effective sample size (ESS) for each param-
eter is defined as the number of independent
samples that we have from the posterior after au-

tocorrelations in the chains are accounted for. The ESS obtained
during the case study analysis signifies a reasonable value (mostly
greater than 1700 samples) for each model parameter to result in
stable estimates. This also can be verified by analyzing the mean
estimate of each parameter. We conclude that the HMC algorithm
has done a reasonable job of estimating the required parameters for
the regression model (Table 3). In addition, we can infer the rela-
tionship of the target TOC contents with the various parameters of
interest. For example, the physical properties such as bulk density,
U, and Th contents are negatively correlated with the TOC contents
in organic shale in this experiment. Even though the mean charac-
terizes the most probable value of a model parameter, it is beneficial
to review the uncertainty associated with it so as not to set excess
confidence in a noisy estimate. Consequently, it is a general practice
to calculate the highest posterior density (HPD) and credible inter-
val (CDI) estimate of the posterior distribution. HPD is the shortest
interval that contains a given portion of the posterior probability
density. Table 3 (third and fourth columns) represents HPD intervals
of parameters of interest for this case example while outlining the
summary statistics. Note that the HPD and confidence intervals in
frequentist statistics are two different entities, and HPD is repre-
sented by a value of 94%. For example, according to our model, the
HPD of the intercept signifies that there is a 94% probability that the
parameter “intercept” for the estimation of TOC content lies be-
tween 0.087 and 31.207 (Figure 7). Similar inferences can be drawn
for other parameters of interest for this Bayesian framework. In ad-

Figure 5. Crossplots among five well-log variables, i.e., GR, DTCO, RHOB, U and Th
contents, and target TOC content measured from core samples in the laboratory. The
dashed black square displays the distribution of samples in TOC content.
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dition to the visual inspection of trace plots, we analyze the Gelman-
Rubin convergence criterion. It offers a valuable and quantitative
guide for convergence quality. Table 3 indicates that all of the sto-
chastic parameters have R_hat values equal to 1.0. Therefore, the

distributions in the two chains are indistinguishable and the Markov
chains are said to have converged for the marginal parameter
distributions.
To evaluate the model variable effects on the TOC estimation, we

explore the model space by varying one parameter at a time while
keeping the others constant. This mechanism assesses the model
across the range of parameter values along with pooled values
for the numerous samples. We can have a different set of parameters
from the trace as it draws every single time. By this, we can analyze
the effect of a single model variable together with the associated
uncertainty in the model estimation. We believe that each nonquery
variable is at the median value. Figure 8 demonstrates the effect of
changing model variables one at a time on the posterior predictive of
the TOC contents. We notice that the uncertainty associated with the
variables GR, DTCO, and U contents during the model estimation
appears to be higher (extreme in sideways, but less so toward the
mean) when compared with the other two model variables such as
RHOB and Th contents. This implies that, among many physical
properties, information about RHOB and Th contents is vital to
the TOC content estimation because the predictive posterior distri-
butions are more uniform for such variables and follow a certain
trend. Hence, the uncertainty in the model estimation should be less
while considering RHOB and Th contents among other variables.
These observations are specific to our model concerning this field
study. Nevertheless, we do not rule out the possibility of discerning
the influence of other model variables on TOC estimation for some
other field data.
To locate unseen parameter values that lie within a specific sub-

jective probability, it is common practice to summarize the predic-
tions in an interval estimate akin to a confidence interval in the
frequentist approach. These intervals are known as CDIs because
the approximations provide a certain amount of probability (cred-
ibility) of the parameter along with the upper and lower bounds.
Any parameter value within the intervals has the highest probability
density than any other point outside. For example, a 95% CDI sug-
gests two limits for the middle area in which 95% of the posterior
distribution will fall. The two shaded portions in Figure 9 illustrate
the 50% CDI (cyan shaded area) and 95% CDI (sky-blue shaded
area) for all of the variables for the model estimates. These CDIs
offer a more intuitive and valuable decision in interpretation, espe-

Figure 6. Representation of marginal posteriors of each stochastic
parameter (left column) and trace plots of individual samples of
HMC chains in sequence (right column) for the multivariate Baye-
sian model for the case study (example 2) data.

Table 3. A statistical summary of the posterior estimates of
the Bayesian model parameters for the studied well, well A.

Coefficients Posterior mean HPD_3% HPD_97% ESS R_hat

Intercept 15.289 0.087 31.207 1980 1.0

GR 0.004 −0.007 0.015 1972 1.0

DTCO 0.065 −0.005 0.136 2436 1.0

RHOB −6.699 −12.118 −1.127 2127 1.0

U −0.019 −0.125 0.084 1765 1.0

Th −0.072 −0.167 0.021 2469 1.0

Sigma 0.607 0.411 0.814 1674 1.0

Note: ESS, effective sample size; HDI, highest posterior density; R_hat, Gelman-
Rubin statistic.

Figure 7. Histograms showing the posterior distribution (HPD) of
the model parameters of interest for the case study (example 2) data.
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cially dealing with uncertainties. We have seen that the relationship
between predicted TOC contents and each variable is different,
which is obvious because every parameter signifies different physi-
cal properties and may not directly influence the TOC content in
organic shale. Nevertheless, the observed TOC contents fall within
the predicted ranges including the 50% and 95% CDI limits, except
for a few points for some variables such as GR, DTCO, and Th
contents (Figures 9a, 9b, and 9e). The uncertainty in the prediction
is large when a few variables crossed a certain range of values. For
example, after a certain GR value (i.e., 380 API), the uncertainty in
estimation rises as evidenced by the fact that the width of 95% CDI
has increased. As a whole, it appears that the model is a useful rep-
resentation of the data. To make an informed assessment of the TOC
contents, it is critical to comprehend not only how the average TOC
value is related to a certain depth or parameter, but how much the
parameter or specific depth is expected to vary around that average.
Prediction intervals are beneficial in such cases, and the Bayesian
framework ensures that it is straightforward to acquire these in-
tervals.

Model validation

Experiencing accepted convergence and determining that we now
have a judicious number of samples, we can take measures to use
the simulation results to make inferences from the model. This is an
additional useful way to ensure the convergence of the HMC
method and validate the model. The procedure is known as a pos-
terior predictive check (PPC) in which data are generated from the
model using parameters drawn from the posterior distribution and
then compared with the posterior predictions of the model. In such a
way, PPC associates two sources of uncertainty; one is the param-
eters uncertainty apprehended by the posterior and another is sam-
pling uncertainty captured by likelihood. PPC supports considering
a different model for a better explanation of data if reasonable dis-
crepancies are observed between the model and the predicted data.
Nonetheless, it is quite difficult to comment on how many alterna-
tive models one can try. The model drawn should be tractable and
meaningful to describe the data. We draw a total of 800 random
samples of parameters from the observed model. Next, it will draw
4200 random numbers from a normal distribution for each sample.
Figure 10

Figure 8. Represents posterior predictive model variable effect and
associated uncertainty in the model estimates. The variables used
are (a) GR (API), (b) DTCO (μs/ft), (c) RHOB (g/cm3), (d) U con-
tents (ppm), and (e) Th contents (ppm), respectively.

Figure 9. Scatter plots showing posterior predicted TOC contents
against each variable: (a) GR (API), (b) DTCO (μs/ft), (c) RHOB (g/
cm3), (d) U contents (ppm), and (e) Th contents (ppm), respectively.
The sky-blue shaded zone is 95% CDI, and the cyan shaded zone is
50% CDI. The red dots define the reference TOC contents.
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depicts the posterior predictive mean plot of the measured data
together with the calculated mean from each one of the 800 pos-
terior predictive samples. It is easy to see that the inferred mean
ranges simulated from the model with a choice of parameter values
appear to have well described the core-derived mean TOC value of
3.48 wt%. This suggests that the proposed model aptly represents
the observed data and that the sampler is converged properly.
To further validate the model with confidence, we compare the

model with typically another one or more standard models that vary
from the main model in some ways. Even though the convergence
criteria are fulfilled, it is always better to compare (probably
through cross validation) the main model with 2C or 3C mixture
models. For any model, the aim is to ensure how well a model rep-
resents the true distribution over the model parameters and mea-
sured data. Nonetheless, it is difficult to know this, so surrogates
are used to assess the average fit of a few data considering the model
trained on the remaining data or approximate the whole data duly
corrected for the model’s pliability from its parameters. We use the
former information criteria to assess the developed model’s capabil-
ity of capturing the true TOC content distribution obtained from the

real field case. We notice that the TOC contents from the simulated
model have a good agreement with the laboratory-measured values
(Figure 11).
In addition, we test the model by predicting a new data point and

then use it to corroborate the mean of the measured TOC content.
For this, we choose a normal distribution of estimated outputs by
multiplying model parameters with data values, and the mean of
each parameter from the trace is considered to aid as the best
approximation of the parameter. Then, to predict a new data point,
we substitute the value of the parameters and obtain the PDF for the
TOC contents. As evidenced in Figure 12, the mean estimate
(i.e., 1.6 wt%) lines up well with the core-measured TOC value
(i.e., 1.51 wt%). However, a wide estimated interval prevails in this
case, which led to slight uncertainty in estimation, which could have
been avoided if we had enough core-derived TOC values. By and
large, in comparison to the known TOC value of 1.51 wt%, the
probabilistic model performs well, with a peak probability at
1.49 wt%.
Figure 13 depicts a quantitative assessment of the Bayesian ap-

proach inferred by the HMCmethod for the estimation of TOC con-
tents. We notice that data are more clustered along the 45° line,
meaning that the inferred TOC contents match reasonably well with
the reference TOC values obtained from the laboratory. Ultimately,
the model yields a correlation coefficient, R2 value of 0.836 among
the predicted results, and core experiment results. The MAE and
rms error are approximately 0.380 wt% and 0.505 wt%, respec-
tively.
A more intuitive way to interpret the results can be established by

assessing the prediction uncertainty and variability of the predic-
tions concerning the ensemble mean. As said previously, we use
the randomly drawn 800 samples from the posterior distribution
to construct the ensemble of the predicted models. In practice,
the uncertainty will be relatively small if the ensemble mean
matches the reference TOC contents sensibly and vice versa. Also,
we perform sensitivity analysis on several models in the ensemble
and conclude that at least 800 models are essential for the posterior
distribution to attain stable statistics. In fact, the predicted standard

Figure 10. Comparison of the posterior predictive mean with that of
core-derived TOC content (represented by a light blue line) to val-
idate the model.

Figure 11. Representation of the posterior predictive samples
chosen randomly to simulate data from the model together with
the measured TOC data at a certain depth.

Figure 12. Posterior probability density with an overlain histogram
for the estimated TOC content distribution while using the model to
predict new data.
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deviation converges for 800 ensembles of realizations; with less
than 200 models, the ensemble subsides after a few iterations. Note
that the computation performed assumes that ensembles follow a
Gaussian distribution, and we are approximating the posterior dis-
tribution through ensemble realizations. Figure 14 reveals the aver-
age expected value of the TOC contents at specific depth intervals
and the 50% and 95% CDIs for the expected value (shaded area). It
is noticeable that the ensemble mean agrees well with the reference
model, i.e., core-measured TOC contents. In addition, both the
CDIs, i.e., 50% CDI (cyan shaded area) and 95% CDI (sky-blue
shaded area), vary within a narrow range, indicating that the esti-
mation uncertainty is not very large. Most of the data are within the
50% CDI intervals, except for a few depth points that fall within the
95% CDI. The TOC content is relatively less (approximately 1.4 wt
%) within the depth range between 1480 and 1550 m, then pro-
ceeded to increase, leading to increased TOC content (as high as
approximately 5.5 wt%) for deeper depth intervals (1550–1840 m).
Figure 15 illustrates the ensemble mean together with 800 ensemble
predictions and reference TOC values obtained from the core during
the laboratory experiment. A visual inspection of the ensemble pre-
dicted results indicates that the posterior mean is consistent with the
individual runs, and that is corroborated by the reference TOC con-
tents (Figure 15a). The probability of TOC content within the first

depth intervals (i.e., 1480–1680 m) appears to be more as compared
with the deeper depth intervals ranging between 1690 and 1840 m.

TOC estimation based on conventional methods

We follow the modified Schmoker and Hester (1983) method to
calculate the TOC content from the density (RHOB) log. By plot-
ting the reciprocal of bulk density (1/RHOB) as a function of the
measured TOC, the following relationship can be established (Fig-
ure 16a)

TOC ¼ 170.52 �
�

1

RHOB

�
− 61.22: (12)

The response of the GR provides a positive correlation with the
TOC values (Figure 16b), which can be expressed as

TOC ¼ 0.0094 � GRþ 0.8627: (13)

Figure 16c shows the results from the conventional methods, in
which we can see that the estimated TOC values reasonably agree
with the laboratory-measured TOC values. However, the correlation
coefficient (0.780) for the conventional approach is significantly
smaller than that of the corresponding Bayesian model (0.836).

Figure 15. Results from ensemble predictions, from left to right:
(a) the ensemble predictive samples with the ensemble mean and
laboratory-measured TOC data and (b) the posterior probability
at each depth interval.

Figure 13. Crossplot showing the comparison of the core-derived
TOC contents with the predicted TOC contents based on the Baye-
sian model using HMC inference.

Figure 14. Results showing the ensemble mean (blue curve) with
50% (cyan shaded zone) and 95% CDI (sky-blue shaded zone) from
800 predictions using the HMC-based Bayesian approach. The red
dots signify the reference TOC values as obtained from the labo-
ratory experiment.
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Also, we observe that the anoxic lower Silurian shale has
RHOB < 2.67 g/cm3 and GR > 200 API, indicating this shale to
be organically richer than the upper shale section.

DISCUSSION

The workflow for estimating TOC contents presented here makes
use of a Bayesian setting inferred ensembles that account for the
uncertainty of the model estimates. The present approach focuses
on the HMC-based MCMC algorithm applied to approximate the
posterior distributions for the unknown model variables, which
are often problematic and might not be analytically tractable. In
general, the implementation of the proposed approach for the TOC
content estimation is not complicated and can be applied easily to
estimate other parameters of interest as well. In case of limited avail-
able samples, as the present study reports, the Bayesian inference is
a better method to develop models owing to its tendency to provide
reasonable estimates with few data points using judicious prior(s).
Several studies indicate unequivocally that the HMC approach in
the Bayesian setting is very much dependent on prior information
and measured data points; this study is no exception (Buland and
Omre, 2003; Eidsvik et al., 2004; Grana, 2020; Feng et al., 2021). In
the Bayesian setting, the results are interpreted intuitively by estab-
lishing a preliminary estimate and improving it further as we gath-
ered more information about it.
Due to subsurface heterogeneities and limited data to capture

those heterogeneities, numerous sources of uncertainty arise. It
can be quantified by using probabilistic methods in which prior
knowledge can be integrated with the information from the data
to infer the posterior distribution. The uncertainty can be character-
ized in various forms including probability distributions, confidence
intervals, and measures of variability. In general, the uncertainty

inferred from posterior distributions exclusively reckons for the un-
certainty in the measured data and the physical relation between
data and model parameters (Sen and Stoffa, 1996; Scales and Ten-
orio, 2001; Mosegaard and Tarantola, 2002). Predicting uncertainty
is critical to decision-making in any reservoir characterization in-
cluding shale oil/gas reservoirs, and this should be based not only
on the most likely model but also on the uncertainty estimates.
The present study assesses the prediction uncertainty by an en-

semble of predicted models. We start the approach by exploring
approximately 200 ensemble realizations from the posterior distri-
bution and finally realize up to 800 ensembles of models because a
limited number of ensembles are not very useful to assess the un-
certainty. The results show that the estimated uncertainty is not too
high as most of the measured data points fall within the 50% and
95% CDI, and the predicted mean follows the trend of the real data.
Moreover, the present approach could quantify the prediction un-
certainty of the TOC content at each depth. To give an instance,
in our example 2, the estimated uncertainty based on the standard
deviation for the depth range 1520–1680 m is narrow (the TOC
content is predicted more assuredly) when compared with the depth
range 1700–1840 m (Figures 14 and 15). We speculate that the
variation in the prediction is due to a lack of representative data
and can be improved by refining prior models or incorporating more
core-derived TOC data obtained from the laboratory experiment
(Feng et al., 2021). This suggests that the present approach for TOC
estimation still has few limitations, and the uncertainty in the model
prediction can be improved by incorporating sets of multiple prior
models involving various facies profiles (Grana, 2020).
Conventional methods make use of one or two geophysical log

variables to infer the TOC content in organic shale, and thus could
not truly capture TOC characteristics in the complex shale reser-
voirs, more particularly in low TOC-dominated shale reservoirs.

The application to both the example case studies
demonstrates that the TOC content estimation in
the Bayesian setting is far better than the conven-
tional methods. The benefits of the present
approach are twofold: predicted model with uncer-
tainty estimates, and better accuracy in the TOC
estimation.
Furthermore, note that the Devonian Duvernay

Formation (Passey et al., 1990) contains 6%–
10% TOC between 2249 and 2435 m intervals,
and the Silurian shale of the Ahnet Basin (second
example used in this study) is characterized by
relatively low TOC values (<6%). The proposed
Bayesian multivariate model provides satisfac-
tory results in the studied shales with varying
TOC ranges from the two continents. The studied
Silurian Ahnet shale indicates a change of redox
condition from bottom to top; the lower shale in-
terval between 1570 and 1850 m appears to be
deposited during the early transgressive phase
in a highly reduced and anoxic environment,
whereas the upper shale between 1450 and
1570 m might have deposited at a subsequent
stage of the transgression in a relatively oxic
environment. The change from anoxic to the oxic
environment is reflected in the TOC content of
the Silurian shale, as the anoxic conditions

Figure 16. Relationship of (a) reciprocal of bulk density following modified SH model and
(b) GR logs with measured TOC in the Silurian shale, and (c) estimation of density and GR-
derived TOC values. Black dots indicate laboratory-measured TOC values using the cores.
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favored higher organic matter preservation, yielding higher TOC in
the lower Silurian shale. The Bayesian TOC estimation of the entire
400 m of the Silurian shale exhibits good results irrespective of the
shift in the depositional environment within the same formation.
However, it seems that the present approach predicts the TOC of
the oxic upper Silurian shale more confidently than its lower
counterpart, although sufficient data availability might be a prob-
able reason for such variation in the TOC prediction.

CONCLUSION

Through this study, we have explored the possibility of the appli-
cation of the Bayesian framework in predicting the TOC content in
organic shales and quantifying the associated uncertainty in a regres-
sion process. Although the Bayesian approach is applied more
than ever in many geophysical applications, the application of the
HMC-based MCMC algorithm for TOC matter estimation has not
been reported elsewhere. A suite of available geophysical wireline logs
is used to demonstrate the applicability of the present approach and the
results are then compared with those from the two most widely used
conventional methods (GR-based and modified Schmoker methods).
The two case examples of different geology demonstrate that the pro-
posed approach is computationally efficient and accurately predicts the
TOC contents together with model uncertainty. Specific conclusions
drawn from this study are given as follows:

1) The posterior distributions of the unknown model parameters
of interest are obtained by drawing samples using a multidi-
mensional stochastic process based on the HMC method with
the NUTS. We have sampled two chains parallelly to realize a
total of 6000 samples that finally met the convergence
criteria.

2) The Bayesian inference helps to quantity prediction uncer-
tainty within the model by generating ensembles of models
randomly drawn from the posterior. The predicted mean
closely follows the core-measured TOC values as obtained
from the laboratory experiment, and that lies within the CDIs.

3) The Bayesian setting performs well with reasonable statistics,
duly corroborated by the laboratory-measured TOC values, as
compared with the conventional methods for the TOC content
estimation.

4) The proposed model is proven to be better suited to predict
the high TOC contents with higher accuracy in the lower
Silurian shale deposited mainly during the anoxic conditions
(the early transgressive phase) irrespective of the shift in the
depositional environment within the same formation.
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APPENDIX A

GOVERNING EQUATIONS OF HAMILTONIAN
DYNAMICS

In Hamiltonian dynamics, the total Hamiltonian energy, i.e., the
summation of potential and kinetic energy, is estimated for the
present state and an object’s motion can be expressed concerning
its location through model mi and momentum P at a particular time
(Mackay, 2003; Neal and Radford, 2011; Betancourt and Girolami,
2013). For a system following Hamiltonian dynamics, the Hamil-
tonian energy function can be expressed in terms of the object’s
potential energy, i.e., VðmiÞ and kinetic energy as TðPÞ, in the fol-
lowing manner:

Hðmi;PÞ ¼ VðmiÞ þ TðPÞ: (A-1)

In practice, while assessing a random variable mi with a PDF
fðmiÞ in the HMC method, an auxiliary density is established that
does not depend on the parameters mi, and follows a multivariate
normal distribution: fðPÞ ∼Multinormalð0;PÞ, where

P
is the

covariance matrix. The joint density function of fðmi;PÞ can be
expressed as

fðmi;PÞ ¼ exp½log fðmiÞ þ log fðPÞ�

∝ exp

�
log fðmiÞ −

1

2
PT

X−1
P
�
: (A-2)

For a given physical system, because of the decomposition of the
joint density, we recast the Hamiltonian in equation A-2 as

fðmi;PÞ ¼ exp½−UðmiÞ − KðPÞ� ¼ expf−Hðmi;PÞg:
(A-3)

HMC draws samples from this joint distribution (mi;P), which
ultimately led to producing samples from the target distribution by
selecting only mi and the new momentum is evolved by following
Hamilton’s equations:

dmi

dt
¼ þ ∂H

∂P
¼ þ ∂T

∂P
;

dP
dt

¼ −
∂H
∂mi

¼ −
∂T
∂mi

−
∂V
∂mi

:

(A-4)

As per the Hamiltonian dynamics, the samples are transferred
while preserving the total energy of the system. Hence, the momen-
tum density is independent of the target density, which means that
∂T∕∂mi ¼ 0, yielding a new momentum evolved by following
Hamilton’s equations:

dmi

dt
¼ þ ∂H

∂P
;

dP
dt

¼ −
∂V
∂mi

: (A-5)
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The vectors m and P can be combined into another vector form
Z ¼ ðm;PÞ in two dimensions and the Hamiltonian stated previ-
ously can take the following form:

dZ
dt

¼ J∇HðZÞ; (A-6)

where ∇H defines the gradient of H and J ¼
�
0D×D ID×D
−ID×D 0D×D

�
is

the 2D × 2D matrix involving identity and zero matrices, respec-
tively.

APPENDIX B

NUTS IN HMC

In this section, we will outline how NUTS helps to tune the
parameters for getting an optimized acceptance rate. NUTS directs
the Hamiltonian dynamics forward and backward in time in a ran-
dom manner until a U-turn criterion is met, that is,

∂X
∂t

¼ ∂
∂t

�
1

2
ðm�

i −miÞTðm�
i −miÞ

�
¼ ðm�

i −miÞTP < 0;

(B-1)

where X is half the squared distance between the current position
m�

i and the initial positionmi at each leapfrog step. If the preceding
condition is satisfied, then a random point from the path is selected
for the MCMC sample and the same process is continued from that
new point. Nevertheless, this approach does not guarantee time-
reversibility or convergence to the accurate distribution. NUTS
overcomes this issue by adopting a recursive algorithm that pre-
serves reversibility by introducing a slice variable “v” with condi-
tional distribution:

pðvjmi;PÞ¼Uniform

�
v;

�
0;exp

�
fðmiÞ−

1

2
PT

X−1
P
���

:

(B-2)

Subsequently, we fix v and sample mi uniformly from the hori-
zontal sliced region R, as defined by R ¼ fmi∶v ≤ φðmiÞg, where
φðmiÞ is the kernel of fðmiÞ. It is, however, challenging to find the
bounds of R, which can be solved by producing a finite set of all
(mi;P) by repeatedly doubling its size (Neal and Radford, 2011)
until the endpoints are outside R. The doubling process yields
by arbitrarily selecting forward and backward leapfrog steps to meet
time reversibility. Ultimately, doubling stopped when for one of
these subtrees, the states m−

i , P
− and mþ

i , P
þ linked with the left-

most and rightmost leaves of that subtree satisfies the following:

ðmþ
i −m−

i ÞTP− < 0 or m−
i − ðmþ

i ÞTPþ < 0: (B-3)

Following is the process of tuning Δt for the kth iteration of a
Markov chain:

logððΔtÞkþ1Þ←α −
ffiffiffi
k

p

γ

1

kþ k0

Xk
j¼1

ðδ − pθÞj;

logðΔ̄tkþ1Þ←ρk logððΔtÞkþ1Þ þ ð1 − ρkÞ logðΔ̄tkÞ;
ðΔtÞkþ1←Δ̄tkþ1: (B-4)

where pθ and δ represent the actual acceptance probability and
desired average acceptance probability, respectively; and γð> 0Þ
defines a free parameter that controls the volume of shrinkage to-
ward α, which is a spontaneously chosen point wherein the iterated
ðΔtÞk shrinks, respectively. The parameter k0 also is a free param-
eter that dampens early exploration. It is recommended to set α ¼
logð10Δt1Þ and δ ≈ 0.6 to save computation and reach the condition
for α → δ (Hoffman and Gelman, 2014). In practice, a substitute
statistic to Metropolis acceptance probability should be defined be-
cause NUTS selects ðm�

i ;P
�Þ from several candidates and not only

one. In such a case, the acceptance probability for each iteration can
be written as

pθ ¼
1

jBkj
X

mi;P∈Bk

min½1; pðmk
i ;P

kÞ∕pðmk−1
i ;Pk;0Þ�: (B-5)

Here, mk
i and Pk are the proposals, mk−1

i and Pk;0 are initial val-
ues, and Bk represents the set of all states being explored by the
algorithm during the final doubling process of the Markov chain.
In each iteration, NUTS constructs a tree node based on subtrees
(k = 0, 1, 2, : : : ) generated by a recursive process, such that a sub-
tree is generated with 2k nodes in the same iteration as the previous
subtree, but in a random direction. For a detailed understanding of
the NUTS including flowcharts, one can refer to Hoffman and Gel-
man (2014).

REFERENCES

Bai, Y., and M. Tan, 2020, Dynamic committee machine with fuzzy-c-means
clustering for total organic carbon content prediction from wireline logs:
Computers & Geosciences, 146, 104626, doi: 10.1016/j.cageo.2020
.104626.

Bakhtiar, H. A., A. Telmadarreie, M. Shayesteh, M. H. H. Fard, H. Talebi,
and Z. Shirband, 2011, Estimating total organic carbon content and source
rock evaluation, applying delta logR and neural network methods: Ahwaz
and Marun Oilfields, SWof Iran: Petroleum Science and Technology, 29,
1691–1704, doi: 10.1080/10916461003620495.

Bayes, T., 1763, An essay towards solving a problem in the doctrine of chan-
ces: Philosophical Transactions of the Royal Society of London, 53, 370–
418 (reprinted with biographical note by G. A. Barnard, in Biometrika,
45, 293–315), doi: 10.1098/rstl.1763.0053.

Betancourt, M., and M. Girolami, 2013, Hamiltonian Monte Carlo for hier-
archical models: arXiv:1312.0906.

Bortoli, L. J., F. Alabert, A. Haas, and A. Journel, 1993, Constraining sto-
chastic images to seismic data, in A. Soares, ed., Geostatistics TRÓIA’92,
quantitative geology and geostatistics: Springer, 5, 325–337.

Buland, A., and H. Omre, 2003, Bayesian linearized AVO inversion: Geo-
physics, 68, 185–198, doi: 10.1190/1.1543206.

Carpentier, B., A. Y. Huc, and G. Bessereau, 1991, Wireline logging and
source rocks — Estimations of organic carbon content by CARBOLOG
method: The Log Analyst, 32, 279–297.

Carvalho, C., R. M. Anjos, R. Veiga, and K. Macario, 2011, Application of
radiometric analysis in the study of provenance and transport processes of
Brazilian coastal sediments: Journal of Environmental Radioactivity, 102,
185–192, doi: 10.1016/j.jenvrad.2010.11.011.

Deng, T., J. Ambía, and C. Torres-Verdín, 2020, Multi-well interpretation of
wireline logs and core data in the Eagle Ford Shale using Bayesian In-
version: Unconventional Resources Technology Conference, SEG, Global
Meeting Abstracts, 4331–4340.

Doyen, P. M., 1988, Porosity from seismic data: A geostatistical approach:
Geophysics, 53, 1263–1275, doi: 10.1190/1.1442404.

M176 Ganguli et al.

Downloaded from http://pubs.geoscienceworld.org/geophysics/article-pdf/doi/10.1190/geo2021-0665.1/5645844/geo-2021-0665.1.pdf
by National Geophysical Research Institute user
on 13 July 2022

http://dx.doi.org/10.1016/j.cageo.2020.104626
http://dx.doi.org/10.1016/j.cageo.2020.104626
http://dx.doi.org/10.1016/j.cageo.2020.104626
http://dx.doi.org/10.1016/j.cageo.2020.104626
http://dx.doi.org/10.1016/j.cageo.2020.104626
http://dx.doi.org/10.1080/10916461003620495
http://dx.doi.org/10.1080/10916461003620495
http://dx.doi.org/10.1098/rstl.1763.0053
http://dx.doi.org/10.1098/rstl.1763.0053
http://dx.doi.org/10.1098/rstl.1763.0053
http://dx.doi.org/10.1098/rstl.1763.0053
http://dx.doi.org/10.1190/1.1543206
http://dx.doi.org/10.1190/1.1543206
http://dx.doi.org/10.1190/1.1543206
http://dx.doi.org/10.1016/j.jenvrad.2010.11.011
http://dx.doi.org/10.1016/j.jenvrad.2010.11.011
http://dx.doi.org/10.1016/j.jenvrad.2010.11.011
http://dx.doi.org/10.1016/j.jenvrad.2010.11.011
http://dx.doi.org/10.1016/j.jenvrad.2010.11.011
http://dx.doi.org/10.1016/j.jenvrad.2010.11.011
http://dx.doi.org/10.1190/1.1442404
http://dx.doi.org/10.1190/1.1442404
http://dx.doi.org/10.1190/1.1442404


Duane, S., A. D. Kennedy, B. J. Pendleton, and D. Roweth, 1987, Hybrid
Monte Carlo: Physics Letters B, 195, 216–222, doi: 10.1016/0370-
2693(87)91197-X.

Eidsvik, J., P. Avseth, H. Omre, T. Mukerji, and G. Mavko, 2004, Stochastic
reservoir characterization using prestack seismic data: Geophysics, 69,
978–993, doi: 10.1190/1.1778241.

El Sharawy, M. S., and G. R. Gaafar, 2012, Application of well log analysis
for source rock evaluation in the Duwi Formation, Southern Gulf of Suez,
Egypt: Journal of Applied Geophysics, 80, 129–143, doi: 10.1016/j
.jappgeo.2011.12.005.

Feng, R., D. Grana, and N. Balling, 2021, Variational inference in Bayesian
neural network for well log prediction: Geophysics, 86, no. 3, M91–M99,
doi: 10.1190/geo2020-0609.1.

Fertl, W. H., and H. H. Rieke, 1980, Gamma ray spectral evaluation tech-
niques identify fractures shale reservoirs and source rock characteristics:
Journal of Petroleum Technology, 32, 2053–2062, doi: 10.2118/8454-PA.

Grana, D., 2020, Bayesian petroelastic inversion with multiple prior models:
Geophysics, 85, no. 5, M57–M71, doi: 10.1190/geo2019-0625.1.

Hoffman, M. D., and A. Gelman, 2014, The No-U-turn sampler: Adaptively
setting path lengths in Hamiltonian Monte Carlo: Journal of Machine
Learning Research, 15, 1593–623.

Hu, H. T., R. Su, C. Liu, and L.W.Meng, 2016, The method and application of
using generalized-ΔLgR technology to predict the organic carbon content of
continental deep source rocks: Natural Gas Geoscience, 27, 145–155.

Huang, Z., and M. A. Williamson, 1996, Artificial neural network modelling
as an aid to source rock characterization: Marine & Petroleum Geology,
13, 277–290, doi: 10.1016/0264-8172(95)00062-3.

Jacobi, D., M. Gladkikh, B. Lecompte, G. Hursan, F. Mendez, J. Longo, S.
Ong, M. Bratovich, G. Patton, and P. Shoemaker, 2008, Integrated pet-
rophysical evaluation of shale gas reservoirs: Canadian International
Petroleum Conference/SPE Gas Technology Symposium Joint Confer-
ence, SPE-114925-MS, P23.

Jarvie, D. M., R. J. Hill, T. E. Ruble, and R. M. Pollastro, 2007, Unconven-
tional shale-gas systems: The Mississippian Barnett Shale of north-central
Texas as one model for thermogenic shale-gas assessment: AAPG Bul-
letin, 91, 475–499, doi: 10.1306/12190606068.

Kamali, M. R., and A. A. Mirshady, 2004, Total organic carbon content de-
termined from well logs usingΔlogR and neuro fuzzy techniques: Journal
of Petroleum Science and Engineering, 45, 141–148, doi: 10.1016/j.petrol
.2004.08.005.

Khoshnoodkia, M., H. Mohseni, O. Rahmani, and A. Mohammadi, 2011,
TOC determination of Gadvan Formation in South Pars Gas field: Using
artificial intelligent systems and geochemical data: Journal of Petroleum
Science and Engineering, 78, 119–130, doi: 10.1016/j.petrol.2011.05.010.

Larsen, A. L., M. Ulvmoen, H. Omre, and A. Buland, 2006, Bayesian lith-
ology/fluid prediction and simulation on the basis of a Markov-chain prior
model: Geophysics, 71, no. 5, R69–R78, doi: 10.1190/1.2245469.

Liu, C., C. H. Yin, and S. F. Lu, 2015, Predicting key parameters for var-
iable-coefficient ΔlogR logging technique and its application in source
rocks evaluation: Natural Gas Geoscience, 26, 1925–1931.

Logan, P., and I. Duddy, 1998, An investigation of the thermal history of the
Ahnet and Reggane Basins, Central Algeria, and the consequences for
hydrocarbon generation and accumulation: Geological Society, London,
Special Publications, 132, 131–155.

Lüning, S., and S. Kolonic, 2003, Uranium spectral gamma-ray response as
a proxy for organic richness in black shales: Applicability and limitations:
Journal of Petroleum Geology, 26, 153–174, doi: 10.1111/j.1747-5457
.2003.tb00023.x.

Mackay, D. J., 2003, Information theory, inference, and learning algorithms:
Cambridge University Press.

Makhous, M., Y. Galushkin, and N. Lopatin, 1997, Burial history and kinetic
modeling for hydrocarbon generation, part II, applying the GALO model
to Saharan basins: AAPG Bulletin, 81, 1679–1699, doi: 10.1306/
3B05C41A-172A-11D7-8645000102C1865D.

Martin, O., 2018, Bayesian analysis with python: Packt Publishing Ltd.
McElreath, R., 2016, Statistical rethinking: A Bayesian course with exam-
ples in R and Stan: CRC Press.

Mendelzon, J. D., and M. N. Toksoz, 1985, Source rock characterization
using multivariate analysis of log data: Presented at the 26th Annual Log-
ging Symposium, SPWLA.

Meyer, B. L., and M. H. Nederlof, 1984, Identification of source rocks on
wireline logs by density/resistivity and sonic transit time/resistivity cross
plots: AAPG Bulletin, 68, 121–129, doi: 10.1306/AD4609E0-16F7-
11D7-8645000102C1865D.

Mosegaard, K., and A. Tarantola, 2002, Probabilistic approach to inverse
problems, in W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kis-
slinger, eds., International handbook of earthquake & engineering seis-
mology, Part A: Academic Press, 237–265.

Neal, R.M., andM. Radford, 2011,MCMC using Hamiltonian dynamics, in S.
Brooks, A. Gelman, G. L. Jones, X.-L. Meng, and A. Tarantola, eds., Hand-
book of Markov chain Monte Carlo: Chapman & Hall/CRC, 2, 113–162.

Pan, R. F., Y. Wu, and Z. Song, 2009, Geochemical parameters for shale gas
exploration and basic methods for well logging analysis: China Petroleum
Exploration, 13, 6–9.

Passey, Q. R., S. Creaney, J. B. Kulla, F. J. Moretti, and J. D. Stroud, 1990,
Practical model for organic richness from porosity and resistivity logs:
AAPG Bulletin, 74, 1777–1794, doi: 10.1306/0C9B25C9-1710-11D7-
8645000102C1865D.

Qian, K., J. Ning, X. Liu, and Y. Zhang, 2019, A rock physics driven Baye-
sian inversion for TOC in the Fuling shale gas reservoir: Marine & Petro-
leum Geology, 102, 886–898, doi: 10.1016/j.marpetgeo.2019.01.011.

Renchun, H., W. Yan, C. Sijie, L. Shuai, and C. Li, 2015, Selection of log-
ging-based TOC calculation methods for shale reservoirs: A case study of
the Jiaoshiba shale gas field in the Sichuan Basin: Natural Gas Industry B,
2, 155–161, doi: 10.1016/j.ngib.2015.07.004.

Rimstad, K., P. Avseth, and H. Omre, 2012, Hierarchical Bayesian lithology/
fluid prediction: A North Sea case study: Geophysics, 77, no. 2, B69–
B85, doi: 10.1190/geo2011-0202.1.

Scales, J. A., and L. Tenorio, 2001, Prior information and uncertainty in
inverse problems: Geophysics, 66, 389–397, doi: 10.1190/1.1444930.

Schmoker, J. W., and T. C. Hester, 1983, Organic carbon in Bakken For-
mation, United States portion of Williston Basin: AAPG Bulletin, 67,
2165–2174, doi: 10.1306/AD460931-16F7-11D7-8645000102C1865D.

Sen, M. K., and R. Biswas, 2017, Transdimensional seismic inversion using
the reversible jump Hamiltonian Monte Carlo algorithm: Geophysics, 82,
no. 3, R119–Z23, doi: 10.1190/geo2016-0010.1.

Sen, M. K., and P. L. Stoffa, 1996, Bayesian inference, Gibbs sampler and
uncertainty estimation in geophysical inversion: Geophysical Prospecting,
44, 313–350, doi: 10.1111/j.1365-2478.1996.tb00152.x.

Sen, M. K., and P. L. Stoffa, 2013, Global optimization methods in geo-
physical inversion: Cambridge University Press.

Sivia, D., and J. Skilling, 2006, Data analysis: A Bayesian tutorial: Oxford
University Press.

Supernaw, I. R., A. D. Mccoy, and A. J. Lind, 1978, Method for in situ
evaluation of the source rock potential of earth formations: U. S. Patent
US4071755 A.

Tan, M., Q. Liu, and S. Zhang, 2013, A dynamic adaptive radial basis func-
tion approach for total organic carbon content prediction in organic shale:
Geophysics, 78, no. 6, D445–D459, doi: 10.1190/geo2013-0154.1.

Tarantola, A., 2005, Inverse problem theory and methods for model param-
eter estimation: SIAM.

Tixier, M. P., and M. R. Curtis, 1967, Oil shale yield predicted from well
logs: Drilling and Production — 7th World Petroleum Congress, Elsev-
ier, WPC-12271.

Verma, S., T. Zhao, K. J. Marfurt, and D. Devegowda, 2016, Estimation of
total organic carbon and brittleness volume: Interpretation, 4, no. 3,
T373–T385, doi: 10.1190/INT-2015-0166.1.

Vernik, L., and J. Milovac, 2011, Rock physics of organic shales: The Lead-
ing Edge, 30, 318–323, doi: 10.1190/1.3567263.

Wang, G., T. R. Carr, Y. Ju, and C. Li, 2014, Identifying organic-rich Mar-
cellus Shale lithofacies by support vector machine classifier in the Appa-
lachian basin: Computers & Geosciences, 64, 52–60, doi: 10.1016/j.cageo
.2013.12.002.

Yu, H., R. Rezaee, Z. Wang, T. Han, Y. Zhang, M. Arif, and L. Johnson,
2017, A new method for TOC estimation in tight shale gas reservoirs:
International Journal of Coal Geology, 179, 269–277, doi: 10.1016/j
.coal.2017.06.011.

Zhao, T., S. Verma, D. Devegowda, and V. Jayaram, 2015, TOC estimation
in the Barnett Shale from triple combo logs using support vector machine:
85th Annual International Meeting, SEG, Expanded Abstracts, 791–796,
doi: 10.1190/segam2015-5922788.1.

Zhu, L. Q., C. M. Zhang, S. Zhang, X. Q. Zhou, and W. N. Liu, 2019, An
improved method for evaluating the TOC content of a shale formation
using the dual-difference ΔlogR method: Marine and Petroleum Geology,
102, 800–816, doi: 10.1016/j.marpetgeo.2019.01.031.

Biographies and photographs of the authors are not available.

Bayesian approach for TOC estimation M177

Downloaded from http://pubs.geoscienceworld.org/geophysics/article-pdf/doi/10.1190/geo2021-0665.1/5645844/geo-2021-0665.1.pdf
by National Geophysical Research Institute user
on 13 July 2022

http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1190/1.1778241
http://dx.doi.org/10.1190/1.1778241
http://dx.doi.org/10.1190/1.1778241
http://dx.doi.org/10.1016/j.jappgeo.2011.12.005
http://dx.doi.org/10.1016/j.jappgeo.2011.12.005
http://dx.doi.org/10.1016/j.jappgeo.2011.12.005
http://dx.doi.org/10.1016/j.jappgeo.2011.12.005
http://dx.doi.org/10.1016/j.jappgeo.2011.12.005
http://dx.doi.org/10.1016/j.jappgeo.2011.12.005
http://dx.doi.org/10.1190/geo2020-0609.1
http://dx.doi.org/10.1190/geo2020-0609.1
http://dx.doi.org/10.1190/geo2020-0609.1
http://dx.doi.org/10.2118/8454-PA
http://dx.doi.org/10.2118/8454-PA
http://dx.doi.org/10.1190/geo2019-0625.1
http://dx.doi.org/10.1190/geo2019-0625.1
http://dx.doi.org/10.1190/geo2019-0625.1
http://dx.doi.org/10.1016/0264-8172(95)00062-3
http://dx.doi.org/10.1016/0264-8172(95)00062-3
http://dx.doi.org/10.1306/12190606068
http://dx.doi.org/10.1306/12190606068
http://dx.doi.org/10.1016/j.petrol.2004.08.005
http://dx.doi.org/10.1016/j.petrol.2004.08.005
http://dx.doi.org/10.1016/j.petrol.2004.08.005
http://dx.doi.org/10.1016/j.petrol.2004.08.005
http://dx.doi.org/10.1016/j.petrol.2004.08.005
http://dx.doi.org/10.1016/j.petrol.2004.08.005
http://dx.doi.org/10.1016/j.petrol.2011.05.010
http://dx.doi.org/10.1016/j.petrol.2011.05.010
http://dx.doi.org/10.1016/j.petrol.2011.05.010
http://dx.doi.org/10.1016/j.petrol.2011.05.010
http://dx.doi.org/10.1016/j.petrol.2011.05.010
http://dx.doi.org/10.1016/j.petrol.2011.05.010
http://dx.doi.org/10.1190/1.2245469
http://dx.doi.org/10.1190/1.2245469
http://dx.doi.org/10.1190/1.2245469
http://dx.doi.org/10.1111/j.1747-5457.2003.tb00023.x
http://dx.doi.org/10.1111/j.1747-5457.2003.tb00023.x
http://dx.doi.org/10.1111/j.1747-5457.2003.tb00023.x
http://dx.doi.org/10.1111/j.1747-5457.2003.tb00023.x
http://dx.doi.org/10.1111/j.1747-5457.2003.tb00023.x
http://dx.doi.org/10.1111/j.1747-5457.2003.tb00023.x
http://dx.doi.org/10.1306/3B05C41A-172A-11D7-8645000102C1865D
http://dx.doi.org/10.1306/3B05C41A-172A-11D7-8645000102C1865D
http://dx.doi.org/10.1306/3B05C41A-172A-11D7-8645000102C1865D
http://dx.doi.org/10.1306/AD4609E0-16F7-11D7-8645000102C1865D
http://dx.doi.org/10.1306/AD4609E0-16F7-11D7-8645000102C1865D
http://dx.doi.org/10.1306/AD4609E0-16F7-11D7-8645000102C1865D
http://dx.doi.org/10.1306/0C9B25C9-1710-11D7-8645000102C1865D
http://dx.doi.org/10.1306/0C9B25C9-1710-11D7-8645000102C1865D
http://dx.doi.org/10.1306/0C9B25C9-1710-11D7-8645000102C1865D
http://dx.doi.org/10.1016/j.marpetgeo.2019.01.011
http://dx.doi.org/10.1016/j.marpetgeo.2019.01.011
http://dx.doi.org/10.1016/j.marpetgeo.2019.01.011
http://dx.doi.org/10.1016/j.marpetgeo.2019.01.011
http://dx.doi.org/10.1016/j.marpetgeo.2019.01.011
http://dx.doi.org/10.1016/j.marpetgeo.2019.01.011
http://dx.doi.org/10.1016/j.ngib.2015.07.004
http://dx.doi.org/10.1016/j.ngib.2015.07.004
http://dx.doi.org/10.1016/j.ngib.2015.07.004
http://dx.doi.org/10.1016/j.ngib.2015.07.004
http://dx.doi.org/10.1016/j.ngib.2015.07.004
http://dx.doi.org/10.1016/j.ngib.2015.07.004
http://dx.doi.org/10.1190/geo2011-0202.1
http://dx.doi.org/10.1190/geo2011-0202.1
http://dx.doi.org/10.1190/geo2011-0202.1
http://dx.doi.org/10.1190/1.1444930
http://dx.doi.org/10.1190/1.1444930
http://dx.doi.org/10.1190/1.1444930
http://dx.doi.org/10.1306/AD460931-16F7-11D7-8645000102C1865D
http://dx.doi.org/10.1306/AD460931-16F7-11D7-8645000102C1865D
http://dx.doi.org/10.1190/geo2016-0010.1
http://dx.doi.org/10.1190/geo2016-0010.1
http://dx.doi.org/10.1190/geo2016-0010.1
http://dx.doi.org/10.1111/j.1365-2478.1996.tb00152.x
http://dx.doi.org/10.1111/j.1365-2478.1996.tb00152.x
http://dx.doi.org/10.1111/j.1365-2478.1996.tb00152.x
http://dx.doi.org/10.1111/j.1365-2478.1996.tb00152.x
http://dx.doi.org/10.1111/j.1365-2478.1996.tb00152.x
http://dx.doi.org/10.1111/j.1365-2478.1996.tb00152.x
http://dx.doi.org/10.1190/geo2013-0154.1
http://dx.doi.org/10.1190/geo2013-0154.1
http://dx.doi.org/10.1190/geo2013-0154.1
http://dx.doi.org/10.1190/INT-2015-0166.1
http://dx.doi.org/10.1190/INT-2015-0166.1
http://dx.doi.org/10.1190/INT-2015-0166.1
http://dx.doi.org/10.1190/1.3567263
http://dx.doi.org/10.1190/1.3567263
http://dx.doi.org/10.1190/1.3567263
http://dx.doi.org/10.1016/j.cageo.2013.12.002
http://dx.doi.org/10.1016/j.cageo.2013.12.002
http://dx.doi.org/10.1016/j.cageo.2013.12.002
http://dx.doi.org/10.1016/j.cageo.2013.12.002
http://dx.doi.org/10.1016/j.cageo.2013.12.002
http://dx.doi.org/10.1016/j.cageo.2013.12.002
http://dx.doi.org/10.1016/j.coal.2017.06.011
http://dx.doi.org/10.1016/j.coal.2017.06.011
http://dx.doi.org/10.1016/j.coal.2017.06.011
http://dx.doi.org/10.1016/j.coal.2017.06.011
http://dx.doi.org/10.1016/j.coal.2017.06.011
http://dx.doi.org/10.1016/j.coal.2017.06.011
http://dx.doi.org/10.1190/segam2015-5922788.1
http://dx.doi.org/10.1190/segam2015-5922788.1
http://dx.doi.org/10.1190/segam2015-5922788.1
http://dx.doi.org/10.1016/j.marpetgeo.2019.01.031
http://dx.doi.org/10.1016/j.marpetgeo.2019.01.031
http://dx.doi.org/10.1016/j.marpetgeo.2019.01.031
http://dx.doi.org/10.1016/j.marpetgeo.2019.01.031
http://dx.doi.org/10.1016/j.marpetgeo.2019.01.031
http://dx.doi.org/10.1016/j.marpetgeo.2019.01.031

